The bayesian effect size can be visualized with dot-quantiles plots. Each dot in the plot corresponds to one percent.
Examples
if (FALSE) { # \dontrun{
library(biogrowleR)
days <- c(
min(t110_ivis_long$days_after_treatment),
max(t110_ivis_long$days_after_treatment)
)
# check ?get_slope_differences for a description on how to get to this step
results_difference <- get_slope_differences(
results_estimates = results_estimates_global,
combination_conditions = combination_treatments,
days = days,
pooled_sds = pooled_sds
)
plot_eff_size_dist(results_difference, days = days)
} # }